1050 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
		
		
			
		
	
	
			1050 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
|  | /** | ||
|  |  * Supported cipher modes. | ||
|  |  * | ||
|  |  * @author Dave Longley | ||
|  |  * | ||
|  |  * Copyright (c) 2010-2014 Digital Bazaar, Inc. | ||
|  |  */ | ||
|  | (function() { | ||
|  | /* ########## Begin module implementation ########## */ | ||
|  | function initModule(forge) { | ||
|  | 
 | ||
|  | forge.cipher = forge.cipher || {}; | ||
|  | 
 | ||
|  | // supported cipher modes
 | ||
|  | var modes = forge.cipher.modes = forge.cipher.modes || {}; | ||
|  | 
 | ||
|  | 
 | ||
|  | /** Electronic codebook (ECB) (Don't use this; it's not secure) **/ | ||
|  | 
 | ||
|  | modes.ecb = function(options) { | ||
|  |   options = options || {}; | ||
|  |   this.name = 'ECB'; | ||
|  |   this.cipher = options.cipher; | ||
|  |   this.blockSize = options.blockSize || 16; | ||
|  |   this._ints = this.blockSize / 4; | ||
|  |   this._inBlock = new Array(this._ints); | ||
|  |   this._outBlock = new Array(this._ints); | ||
|  | }; | ||
|  | 
 | ||
|  | modes.ecb.prototype.start = function(options) {}; | ||
|  | 
 | ||
|  | modes.ecb.prototype.encrypt = function(input, output, finish) { | ||
|  |   // not enough input to encrypt
 | ||
|  |   if(input.length() < this.blockSize && !(finish && input.length() > 0)) { | ||
|  |     return true; | ||
|  |   } | ||
|  | 
 | ||
|  |   // get next block
 | ||
|  |   for(var i = 0; i < this._ints; ++i) { | ||
|  |     this._inBlock[i] = input.getInt32(); | ||
|  |   } | ||
|  | 
 | ||
|  |   // encrypt block
 | ||
|  |   this.cipher.encrypt(this._inBlock, this._outBlock); | ||
|  | 
 | ||
|  |   // write output
 | ||
|  |   for(var i = 0; i < this._ints; ++i) { | ||
|  |     output.putInt32(this._outBlock[i]); | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | modes.ecb.prototype.decrypt = function(input, output, finish) { | ||
|  |   // not enough input to decrypt
 | ||
|  |   if(input.length() < this.blockSize && !(finish && input.length() > 0)) { | ||
|  |     return true; | ||
|  |   } | ||
|  | 
 | ||
|  |   // get next block
 | ||
|  |   for(var i = 0; i < this._ints; ++i) { | ||
|  |     this._inBlock[i] = input.getInt32(); | ||
|  |   } | ||
|  | 
 | ||
|  |   // decrypt block
 | ||
|  |   this.cipher.decrypt(this._inBlock, this._outBlock); | ||
|  | 
 | ||
|  |   // write output
 | ||
|  |   for(var i = 0; i < this._ints; ++i) { | ||
|  |     output.putInt32(this._outBlock[i]); | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | modes.ecb.prototype.pad = function(input, options) { | ||
|  |   // add PKCS#7 padding to block (each pad byte is the
 | ||
|  |   // value of the number of pad bytes)
 | ||
|  |   var padding = (input.length() === this.blockSize ? | ||
|  |     this.blockSize : (this.blockSize - input.length())); | ||
|  |   input.fillWithByte(padding, padding); | ||
|  |   return true; | ||
|  | }; | ||
|  | 
 | ||
|  | modes.ecb.prototype.unpad = function(output, options) { | ||
|  |   // check for error: input data not a multiple of blockSize
 | ||
|  |   if(options.overflow > 0) { | ||
|  |     return false; | ||
|  |   } | ||
|  | 
 | ||
|  |   // ensure padding byte count is valid
 | ||
|  |   var len = output.length(); | ||
|  |   var count = output.at(len - 1); | ||
|  |   if(count > (this.blockSize << 2)) { | ||
|  |     return false; | ||
|  |   } | ||
|  | 
 | ||
|  |   // trim off padding bytes
 | ||
|  |   output.truncate(count); | ||
|  |   return true; | ||
|  | }; | ||
|  | 
 | ||
|  | 
 | ||
|  | /** Cipher-block Chaining (CBC) **/ | ||
|  | 
 | ||
|  | modes.cbc = function(options) { | ||
|  |   options = options || {}; | ||
|  |   this.name = 'CBC'; | ||
|  |   this.cipher = options.cipher; | ||
|  |   this.blockSize = options.blockSize || 16; | ||
|  |   this._ints = this.blockSize / 4; | ||
|  |   this._inBlock = new Array(this._ints); | ||
|  |   this._outBlock = new Array(this._ints); | ||
|  | }; | ||
|  | 
 | ||
|  | modes.cbc.prototype.start = function(options) { | ||
|  |   // Note: legacy support for using IV residue (has security flaws)
 | ||
|  |   // if IV is null, reuse block from previous processing
 | ||
|  |   if(options.iv === null) { | ||
|  |     // must have a previous block
 | ||
|  |     if(!this._prev) { | ||
|  |       throw new Error('Invalid IV parameter.'); | ||
|  |     } | ||
|  |     this._iv = this._prev.slice(0); | ||
|  |   } else if(!('iv' in options)) { | ||
|  |     throw new Error('Invalid IV parameter.'); | ||
|  |   } else { | ||
|  |     // save IV as "previous" block
 | ||
|  |     this._iv = transformIV(options.iv); | ||
|  |     this._prev = this._iv.slice(0); | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | modes.cbc.prototype.encrypt = function(input, output, finish) { | ||
|  |   // not enough input to encrypt
 | ||
|  |   if(input.length() < this.blockSize && !(finish && input.length() > 0)) { | ||
|  |     return true; | ||
|  |   } | ||
|  | 
 | ||
|  |   // get next block
 | ||
|  |   // CBC XOR's IV (or previous block) with plaintext
 | ||
|  |   for(var i = 0; i < this._ints; ++i) { | ||
|  |     this._inBlock[i] = this._prev[i] ^ input.getInt32(); | ||
|  |   } | ||
|  | 
 | ||
|  |   // encrypt block
 | ||
|  |   this.cipher.encrypt(this._inBlock, this._outBlock); | ||
|  | 
 | ||
|  |   // write output, save previous block
 | ||
|  |   for(var i = 0; i < this._ints; ++i) { | ||
|  |     output.putInt32(this._outBlock[i]); | ||
|  |   } | ||
|  |   this._prev = this._outBlock; | ||
|  | }; | ||
|  | 
 | ||
|  | modes.cbc.prototype.decrypt = function(input, output, finish) { | ||
|  |   // not enough input to decrypt
 | ||
|  |   if(input.length() < this.blockSize && !(finish && input.length() > 0)) { | ||
|  |     return true; | ||
|  |   } | ||
|  | 
 | ||
|  |   // get next block
 | ||
|  |   for(var i = 0; i < this._ints; ++i) { | ||
|  |     this._inBlock[i] = input.getInt32(); | ||
|  |   } | ||
|  | 
 | ||
|  |   // decrypt block
 | ||
|  |   this.cipher.decrypt(this._inBlock, this._outBlock); | ||
|  | 
 | ||
|  |   // write output, save previous ciphered block
 | ||
|  |   // CBC XOR's IV (or previous block) with ciphertext
 | ||
|  |   for(var i = 0; i < this._ints; ++i) { | ||
|  |     output.putInt32(this._prev[i] ^ this._outBlock[i]); | ||
|  |   } | ||
|  |   this._prev = this._inBlock.slice(0); | ||
|  | }; | ||
|  | 
 | ||
|  | modes.cbc.prototype.pad = function(input, options) { | ||
|  |   // add PKCS#7 padding to block (each pad byte is the
 | ||
|  |   // value of the number of pad bytes)
 | ||
|  |   var padding = (input.length() === this.blockSize ? | ||
|  |     this.blockSize : (this.blockSize - input.length())); | ||
|  |   input.fillWithByte(padding, padding); | ||
|  |   return true; | ||
|  | }; | ||
|  | 
 | ||
|  | modes.cbc.prototype.unpad = function(output, options) { | ||
|  |   // check for error: input data not a multiple of blockSize
 | ||
|  |   if(options.overflow > 0) { | ||
|  |     return false; | ||
|  |   } | ||
|  | 
 | ||
|  |   // ensure padding byte count is valid
 | ||
|  |   var len = output.length(); | ||
|  |   var count = output.at(len - 1); | ||
|  |   if(count > (this.blockSize << 2)) { | ||
|  |     return false; | ||
|  |   } | ||
|  | 
 | ||
|  |   // trim off padding bytes
 | ||
|  |   output.truncate(count); | ||
|  |   return true; | ||
|  | }; | ||
|  | 
 | ||
|  | 
 | ||
|  | /** Cipher feedback (CFB) **/ | ||
|  | 
 | ||
|  | modes.cfb = function(options) { | ||
|  |   options = options || {}; | ||
|  |   this.name = 'CFB'; | ||
|  |   this.cipher = options.cipher; | ||
|  |   this.blockSize = options.blockSize || 16; | ||
|  |   this._ints = this.blockSize / 4; | ||
|  |   this._inBlock = null; | ||
|  |   this._outBlock = new Array(this._ints); | ||
|  |   this._partialBlock = new Array(this._ints); | ||
|  |   this._partialOutput = forge.util.createBuffer(); | ||
|  |   this._partialBytes = 0; | ||
|  | }; | ||
|  | 
 | ||
|  | modes.cfb.prototype.start = function(options) { | ||
|  |   if(!('iv' in options)) { | ||
|  |     throw new Error('Invalid IV parameter.'); | ||
|  |   } | ||
|  |   // use IV as first input
 | ||
|  |   this._iv = transformIV(options.iv); | ||
|  |   this._inBlock = this._iv.slice(0); | ||
|  |   this._partialBytes = 0; | ||
|  | }; | ||
|  | 
 | ||
|  | modes.cfb.prototype.encrypt = function(input, output, finish) { | ||
|  |   // not enough input to encrypt
 | ||
|  |   var inputLength = input.length(); | ||
|  |   if(inputLength === 0) { | ||
|  |     return true; | ||
|  |   } | ||
|  | 
 | ||
|  |   // encrypt block
 | ||
|  |   this.cipher.encrypt(this._inBlock, this._outBlock); | ||
|  | 
 | ||
|  |   // handle full block
 | ||
|  |   if(this._partialBytes === 0 && inputLength >= this.blockSize) { | ||
|  |     // XOR input with output, write input as output
 | ||
|  |     for(var i = 0; i < this._ints; ++i) { | ||
|  |       this._inBlock[i] = input.getInt32() ^ this._outBlock[i]; | ||
|  |       output.putInt32(this._inBlock[i]); | ||
|  |     } | ||
|  |     return; | ||
|  |   } | ||
|  | 
 | ||
|  |   // handle partial block
 | ||
|  |   var partialBytes = (this.blockSize - inputLength) % this.blockSize; | ||
|  |   if(partialBytes > 0) { | ||
|  |     partialBytes = this.blockSize - partialBytes; | ||
|  |   } | ||
|  | 
 | ||
|  |   // XOR input with output, write input as partial output
 | ||
|  |   this._partialOutput.clear(); | ||
|  |   for(var i = 0; i < this._ints; ++i) { | ||
|  |     this._partialBlock[i] = input.getInt32() ^ this._outBlock[i]; | ||
|  |     this._partialOutput.putInt32(this._partialBlock[i]); | ||
|  |   } | ||
|  | 
 | ||
|  |   if(partialBytes > 0) { | ||
|  |     // block still incomplete, restore input buffer
 | ||
|  |     input.read -= this.blockSize; | ||
|  |   } else { | ||
|  |     // block complete, update input block
 | ||
|  |     for(var i = 0; i < this._ints; ++i) { | ||
|  |       this._inBlock[i] = this._partialBlock[i]; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // skip any previous partial bytes
 | ||
|  |   if(this._partialBytes > 0) { | ||
|  |     this._partialOutput.getBytes(this._partialBytes); | ||
|  |   } | ||
|  | 
 | ||
|  |   if(partialBytes > 0 && !finish) { | ||
|  |     output.putBytes(this._partialOutput.getBytes( | ||
|  |       partialBytes - this._partialBytes)); | ||
|  |     this._partialBytes = partialBytes; | ||
|  |     return true; | ||
|  |   } | ||
|  | 
 | ||
|  |   output.putBytes(this._partialOutput.getBytes( | ||
|  |     inputLength - this._partialBytes)); | ||
|  |   this._partialBytes = 0; | ||
|  | }; | ||
|  | 
 | ||
|  | modes.cfb.prototype.decrypt = function(input, output, finish) { | ||
|  |   // not enough input to decrypt
 | ||
|  |   var inputLength = input.length(); | ||
|  |   if(inputLength === 0) { | ||
|  |     return true; | ||
|  |   } | ||
|  | 
 | ||
|  |   // encrypt block (CFB always uses encryption mode)
 | ||
|  |   this.cipher.encrypt(this._inBlock, this._outBlock); | ||
|  | 
 | ||
|  |   // handle full block
 | ||
|  |   if(this._partialBytes === 0 && inputLength >= this.blockSize) { | ||
|  |     // XOR input with output, write input as output
 | ||
|  |     for(var i = 0; i < this._ints; ++i) { | ||
|  |       this._inBlock[i] = input.getInt32(); | ||
|  |       output.putInt32(this._inBlock[i] ^ this._outBlock[i]); | ||
|  |     } | ||
|  |     return; | ||
|  |   } | ||
|  | 
 | ||
|  |   // handle partial block
 | ||
|  |   var partialBytes = (this.blockSize - inputLength) % this.blockSize; | ||
|  |   if(partialBytes > 0) { | ||
|  |     partialBytes = this.blockSize - partialBytes; | ||
|  |   } | ||
|  | 
 | ||
|  |   // XOR input with output, write input as partial output
 | ||
|  |   this._partialOutput.clear(); | ||
|  |   for(var i = 0; i < this._ints; ++i) { | ||
|  |     this._partialBlock[i] = input.getInt32(); | ||
|  |     this._partialOutput.putInt32(this._partialBlock[i] ^ this._outBlock[i]); | ||
|  |   } | ||
|  | 
 | ||
|  |   if(partialBytes > 0) { | ||
|  |     // block still incomplete, restore input buffer
 | ||
|  |     input.read -= this.blockSize; | ||
|  |   } else { | ||
|  |     // block complete, update input block
 | ||
|  |     for(var i = 0; i < this._ints; ++i) { | ||
|  |       this._inBlock[i] = this._partialBlock[i]; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // skip any previous partial bytes
 | ||
|  |   if(this._partialBytes > 0) { | ||
|  |     this._partialOutput.getBytes(this._partialBytes); | ||
|  |   } | ||
|  | 
 | ||
|  |   if(partialBytes > 0 && !finish) { | ||
|  |     output.putBytes(this._partialOutput.getBytes( | ||
|  |       partialBytes - this._partialBytes)); | ||
|  |     this._partialBytes = partialBytes; | ||
|  |     return true; | ||
|  |   } | ||
|  | 
 | ||
|  |   output.putBytes(this._partialOutput.getBytes( | ||
|  |     inputLength - this._partialBytes)); | ||
|  |   this._partialBytes = 0; | ||
|  | }; | ||
|  | 
 | ||
|  | /** Output feedback (OFB) **/ | ||
|  | 
 | ||
|  | modes.ofb = function(options) { | ||
|  |   options = options || {}; | ||
|  |   this.name = 'OFB'; | ||
|  |   this.cipher = options.cipher; | ||
|  |   this.blockSize = options.blockSize || 16; | ||
|  |   this._ints = this.blockSize / 4; | ||
|  |   this._inBlock = null; | ||
|  |   this._outBlock = new Array(this._ints); | ||
|  |   this._partialOutput = forge.util.createBuffer(); | ||
|  |   this._partialBytes = 0; | ||
|  | }; | ||
|  | 
 | ||
|  | modes.ofb.prototype.start = function(options) { | ||
|  |   if(!('iv' in options)) { | ||
|  |     throw new Error('Invalid IV parameter.'); | ||
|  |   } | ||
|  |   // use IV as first input
 | ||
|  |   this._iv = transformIV(options.iv); | ||
|  |   this._inBlock = this._iv.slice(0); | ||
|  |   this._partialBytes = 0; | ||
|  | }; | ||
|  | 
 | ||
|  | modes.ofb.prototype.encrypt = function(input, output, finish) { | ||
|  |   // not enough input to encrypt
 | ||
|  |   var inputLength = input.length(); | ||
|  |   if(input.length() === 0) { | ||
|  |     return true; | ||
|  |   } | ||
|  | 
 | ||
|  |   // encrypt block (OFB always uses encryption mode)
 | ||
|  |   this.cipher.encrypt(this._inBlock, this._outBlock); | ||
|  | 
 | ||
|  |   // handle full block
 | ||
|  |   if(this._partialBytes === 0 && inputLength >= this.blockSize) { | ||
|  |     // XOR input with output and update next input
 | ||
|  |     for(var i = 0; i < this._ints; ++i) { | ||
|  |       output.putInt32(input.getInt32() ^ this._outBlock[i]); | ||
|  |       this._inBlock[i] = this._outBlock[i]; | ||
|  |     } | ||
|  |     return; | ||
|  |   } | ||
|  | 
 | ||
|  |   // handle partial block
 | ||
|  |   var partialBytes = (this.blockSize - inputLength) % this.blockSize; | ||
|  |   if(partialBytes > 0) { | ||
|  |     partialBytes = this.blockSize - partialBytes; | ||
|  |   } | ||
|  | 
 | ||
|  |   // XOR input with output
 | ||
|  |   this._partialOutput.clear(); | ||
|  |   for(var i = 0; i < this._ints; ++i) { | ||
|  |     this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]); | ||
|  |   } | ||
|  | 
 | ||
|  |   if(partialBytes > 0) { | ||
|  |     // block still incomplete, restore input buffer
 | ||
|  |     input.read -= this.blockSize; | ||
|  |   } else { | ||
|  |     // block complete, update input block
 | ||
|  |     for(var i = 0; i < this._ints; ++i) { | ||
|  |       this._inBlock[i] = this._outBlock[i]; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // skip any previous partial bytes
 | ||
|  |   if(this._partialBytes > 0) { | ||
|  |     this._partialOutput.getBytes(this._partialBytes); | ||
|  |   } | ||
|  | 
 | ||
|  |   if(partialBytes > 0 && !finish) { | ||
|  |     output.putBytes(this._partialOutput.getBytes( | ||
|  |       partialBytes - this._partialBytes)); | ||
|  |     this._partialBytes = partialBytes; | ||
|  |     return true; | ||
|  |   } | ||
|  | 
 | ||
|  |   output.putBytes(this._partialOutput.getBytes( | ||
|  |     inputLength - this._partialBytes)); | ||
|  |   this._partialBytes = 0; | ||
|  | }; | ||
|  | 
 | ||
|  | modes.ofb.prototype.decrypt = modes.ofb.prototype.encrypt; | ||
|  | 
 | ||
|  | 
 | ||
|  | /** Counter (CTR) **/ | ||
|  | 
 | ||
|  | modes.ctr = function(options) { | ||
|  |   options = options || {}; | ||
|  |   this.name = 'CTR'; | ||
|  |   this.cipher = options.cipher; | ||
|  |   this.blockSize = options.blockSize || 16; | ||
|  |   this._ints = this.blockSize / 4; | ||
|  |   this._inBlock = null; | ||
|  |   this._outBlock = new Array(this._ints); | ||
|  |   this._partialOutput = forge.util.createBuffer(); | ||
|  |   this._partialBytes = 0; | ||
|  | }; | ||
|  | 
 | ||
|  | modes.ctr.prototype.start = function(options) { | ||
|  |   if(!('iv' in options)) { | ||
|  |     throw new Error('Invalid IV parameter.'); | ||
|  |   } | ||
|  |   // use IV as first input
 | ||
|  |   this._iv = transformIV(options.iv); | ||
|  |   this._inBlock = this._iv.slice(0); | ||
|  |   this._partialBytes = 0; | ||
|  | }; | ||
|  | 
 | ||
|  | modes.ctr.prototype.encrypt = function(input, output, finish) { | ||
|  |   // not enough input to encrypt
 | ||
|  |   var inputLength = input.length(); | ||
|  |   if(inputLength === 0) { | ||
|  |     return true; | ||
|  |   } | ||
|  | 
 | ||
|  |   // encrypt block (CTR always uses encryption mode)
 | ||
|  |   this.cipher.encrypt(this._inBlock, this._outBlock); | ||
|  | 
 | ||
|  |   // handle full block
 | ||
|  |   if(this._partialBytes === 0 && inputLength >= this.blockSize) { | ||
|  |     // XOR input with output
 | ||
|  |     for(var i = 0; i < this._ints; ++i) { | ||
|  |       output.putInt32(input.getInt32() ^ this._outBlock[i]); | ||
|  |     } | ||
|  |   } else { | ||
|  |     // handle partial block
 | ||
|  |     var partialBytes = (this.blockSize - inputLength) % this.blockSize; | ||
|  |     if(partialBytes > 0) { | ||
|  |       partialBytes = this.blockSize - partialBytes; | ||
|  |     } | ||
|  | 
 | ||
|  |     // XOR input with output
 | ||
|  |     this._partialOutput.clear(); | ||
|  |     for(var i = 0; i < this._ints; ++i) { | ||
|  |       this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]); | ||
|  |     } | ||
|  | 
 | ||
|  |     if(partialBytes > 0) { | ||
|  |       // block still incomplete, restore input buffer
 | ||
|  |       input.read -= this.blockSize; | ||
|  |     } | ||
|  | 
 | ||
|  |     // skip any previous partial bytes
 | ||
|  |     if(this._partialBytes > 0) { | ||
|  |       this._partialOutput.getBytes(this._partialBytes); | ||
|  |     } | ||
|  | 
 | ||
|  |     if(partialBytes > 0 && !finish) { | ||
|  |       output.putBytes(this._partialOutput.getBytes( | ||
|  |         partialBytes - this._partialBytes)); | ||
|  |       this._partialBytes = partialBytes; | ||
|  |       return true; | ||
|  |     } | ||
|  | 
 | ||
|  |     output.putBytes(this._partialOutput.getBytes( | ||
|  |       inputLength - this._partialBytes)); | ||
|  |     this._partialBytes = 0; | ||
|  |   } | ||
|  | 
 | ||
|  |   // block complete, increment counter (input block)
 | ||
|  |   inc32(this._inBlock); | ||
|  | }; | ||
|  | 
 | ||
|  | modes.ctr.prototype.decrypt = modes.ctr.prototype.encrypt; | ||
|  | 
 | ||
|  | 
 | ||
|  | /** Galois/Counter Mode (GCM) **/ | ||
|  | 
 | ||
|  | modes.gcm = function(options) { | ||
|  |   options = options || {}; | ||
|  |   this.name = 'GCM'; | ||
|  |   this.cipher = options.cipher; | ||
|  |   this.blockSize = options.blockSize || 16; | ||
|  |   this._ints = this.blockSize / 4; | ||
|  |   this._inBlock = new Array(this._ints); | ||
|  |   this._outBlock = new Array(this._ints); | ||
|  |   this._partialOutput = forge.util.createBuffer(); | ||
|  |   this._partialBytes = 0; | ||
|  | 
 | ||
|  |   // R is actually this value concatenated with 120 more zero bits, but
 | ||
|  |   // we only XOR against R so the other zeros have no effect -- we just
 | ||
|  |   // apply this value to the first integer in a block
 | ||
|  |   this._R = 0xE1000000; | ||
|  | }; | ||
|  | 
 | ||
|  | modes.gcm.prototype.start = function(options) { | ||
|  |   if(!('iv' in options)) { | ||
|  |     throw new Error('Invalid IV parameter.'); | ||
|  |   } | ||
|  |   // ensure IV is a byte buffer
 | ||
|  |   var iv = forge.util.createBuffer(options.iv); | ||
|  | 
 | ||
|  |   // no ciphered data processed yet
 | ||
|  |   this._cipherLength = 0; | ||
|  | 
 | ||
|  |   // default additional data is none
 | ||
|  |   var additionalData; | ||
|  |   if('additionalData' in options) { | ||
|  |     additionalData = forge.util.createBuffer(options.additionalData); | ||
|  |   } else { | ||
|  |     additionalData = forge.util.createBuffer(); | ||
|  |   } | ||
|  | 
 | ||
|  |   // default tag length is 128 bits
 | ||
|  |   if('tagLength' in options) { | ||
|  |     this._tagLength = options.tagLength; | ||
|  |   } else { | ||
|  |     this._tagLength = 128; | ||
|  |   } | ||
|  | 
 | ||
|  |   // if tag is given, ensure tag matches tag length
 | ||
|  |   this._tag = null; | ||
|  |   if(options.decrypt) { | ||
|  |     // save tag to check later
 | ||
|  |     this._tag = forge.util.createBuffer(options.tag).getBytes(); | ||
|  |     if(this._tag.length !== (this._tagLength / 8)) { | ||
|  |       throw new Error('Authentication tag does not match tag length.'); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // create tmp storage for hash calculation
 | ||
|  |   this._hashBlock = new Array(this._ints); | ||
|  | 
 | ||
|  |   // no tag generated yet
 | ||
|  |   this.tag = null; | ||
|  | 
 | ||
|  |   // generate hash subkey
 | ||
|  |   // (apply block cipher to "zero" block)
 | ||
|  |   this._hashSubkey = new Array(this._ints); | ||
|  |   this.cipher.encrypt([0, 0, 0, 0], this._hashSubkey); | ||
|  | 
 | ||
|  |   // generate table M
 | ||
|  |   // use 4-bit tables (32 component decomposition of a 16 byte value)
 | ||
|  |   // 8-bit tables take more space and are known to have security
 | ||
|  |   // vulnerabilities (in native implementations)
 | ||
|  |   this.componentBits = 4; | ||
|  |   this._m = this.generateHashTable(this._hashSubkey, this.componentBits); | ||
|  | 
 | ||
|  |   // Note: support IV length different from 96 bits? (only supporting
 | ||
|  |   // 96 bits is recommended by NIST SP-800-38D)
 | ||
|  |   // generate J_0
 | ||
|  |   var ivLength = iv.length(); | ||
|  |   if(ivLength === 12) { | ||
|  |     // 96-bit IV
 | ||
|  |     this._j0 = [iv.getInt32(), iv.getInt32(), iv.getInt32(), 1]; | ||
|  |   } else { | ||
|  |     // IV is NOT 96-bits
 | ||
|  |     this._j0 = [0, 0, 0, 0]; | ||
|  |     while(iv.length() > 0) { | ||
|  |       this._j0 = this.ghash( | ||
|  |         this._hashSubkey, this._j0, | ||
|  |         [iv.getInt32(), iv.getInt32(), iv.getInt32(), iv.getInt32()]); | ||
|  |     } | ||
|  |     this._j0 = this.ghash( | ||
|  |       this._hashSubkey, this._j0, [0, 0].concat(from64To32(ivLength * 8))); | ||
|  |   } | ||
|  | 
 | ||
|  |   // generate ICB (initial counter block)
 | ||
|  |   this._inBlock = this._j0.slice(0); | ||
|  |   inc32(this._inBlock); | ||
|  |   this._partialBytes = 0; | ||
|  | 
 | ||
|  |   // consume authentication data
 | ||
|  |   additionalData = forge.util.createBuffer(additionalData); | ||
|  |   // save additional data length as a BE 64-bit number
 | ||
|  |   this._aDataLength = from64To32(additionalData.length() * 8); | ||
|  |   // pad additional data to 128 bit (16 byte) block size
 | ||
|  |   var overflow = additionalData.length() % this.blockSize; | ||
|  |   if(overflow) { | ||
|  |     additionalData.fillWithByte(0, this.blockSize - overflow); | ||
|  |   } | ||
|  |   this._s = [0, 0, 0, 0]; | ||
|  |   while(additionalData.length() > 0) { | ||
|  |     this._s = this.ghash(this._hashSubkey, this._s, [ | ||
|  |       additionalData.getInt32(), | ||
|  |       additionalData.getInt32(), | ||
|  |       additionalData.getInt32(), | ||
|  |       additionalData.getInt32() | ||
|  |     ]); | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | modes.gcm.prototype.encrypt = function(input, output, finish) { | ||
|  |   // not enough input to encrypt
 | ||
|  |   var inputLength = input.length(); | ||
|  |   if(inputLength === 0) { | ||
|  |     return true; | ||
|  |   } | ||
|  | 
 | ||
|  |   // encrypt block
 | ||
|  |   this.cipher.encrypt(this._inBlock, this._outBlock); | ||
|  | 
 | ||
|  |   // handle full block
 | ||
|  |   if(this._partialBytes === 0 && inputLength >= this.blockSize) { | ||
|  |     // XOR input with output
 | ||
|  |     for(var i = 0; i < this._ints; ++i) { | ||
|  |       output.putInt32(this._outBlock[i] ^= input.getInt32()); | ||
|  |     } | ||
|  |     this._cipherLength += this.blockSize; | ||
|  |   } else { | ||
|  |     // handle partial block
 | ||
|  |     var partialBytes = (this.blockSize - inputLength) % this.blockSize; | ||
|  |     if(partialBytes > 0) { | ||
|  |       partialBytes = this.blockSize - partialBytes; | ||
|  |     } | ||
|  | 
 | ||
|  |     // XOR input with output
 | ||
|  |     this._partialOutput.clear(); | ||
|  |     for(var i = 0; i < this._ints; ++i) { | ||
|  |       this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]); | ||
|  |     } | ||
|  | 
 | ||
|  |     if(partialBytes === 0 || finish) { | ||
|  |       // handle overflow prior to hashing
 | ||
|  |       if(finish) { | ||
|  |         // get block overflow
 | ||
|  |         var overflow = inputLength % this.blockSize; | ||
|  |         this._cipherLength += overflow; | ||
|  |         // truncate for hash function
 | ||
|  |         this._partialOutput.truncate(this.blockSize - overflow); | ||
|  |       } else { | ||
|  |         this._cipherLength += this.blockSize; | ||
|  |       } | ||
|  | 
 | ||
|  |       // get output block for hashing
 | ||
|  |       for(var i = 0; i < this._ints; ++i) { | ||
|  |         this._outBlock[i] = this._partialOutput.getInt32(); | ||
|  |       } | ||
|  |       this._partialOutput.read -= this.blockSize; | ||
|  |     } | ||
|  | 
 | ||
|  |     // skip any previous partial bytes
 | ||
|  |     if(this._partialBytes > 0) { | ||
|  |       this._partialOutput.getBytes(this._partialBytes); | ||
|  |     } | ||
|  | 
 | ||
|  |     if(partialBytes > 0 && !finish) { | ||
|  |       // block still incomplete, restore input buffer, get partial output,
 | ||
|  |       // and return early
 | ||
|  |       input.read -= this.blockSize; | ||
|  |       output.putBytes(this._partialOutput.getBytes( | ||
|  |         partialBytes - this._partialBytes)); | ||
|  |       this._partialBytes = partialBytes; | ||
|  |       return true; | ||
|  |     } | ||
|  | 
 | ||
|  |     output.putBytes(this._partialOutput.getBytes( | ||
|  |       inputLength - this._partialBytes)); | ||
|  |     this._partialBytes = 0; | ||
|  |   } | ||
|  | 
 | ||
|  |   // update hash block S
 | ||
|  |   this._s = this.ghash(this._hashSubkey, this._s, this._outBlock); | ||
|  | 
 | ||
|  |   // increment counter (input block)
 | ||
|  |   inc32(this._inBlock); | ||
|  | }; | ||
|  | 
 | ||
|  | modes.gcm.prototype.decrypt = function(input, output, finish) { | ||
|  |   // not enough input to decrypt
 | ||
|  |   var inputLength = input.length(); | ||
|  |   if(inputLength < this.blockSize && !(finish && inputLength > 0)) { | ||
|  |     return true; | ||
|  |   } | ||
|  | 
 | ||
|  |   // encrypt block (GCM always uses encryption mode)
 | ||
|  |   this.cipher.encrypt(this._inBlock, this._outBlock); | ||
|  | 
 | ||
|  |   // increment counter (input block)
 | ||
|  |   inc32(this._inBlock); | ||
|  | 
 | ||
|  |   // update hash block S
 | ||
|  |   this._hashBlock[0] = input.getInt32(); | ||
|  |   this._hashBlock[1] = input.getInt32(); | ||
|  |   this._hashBlock[2] = input.getInt32(); | ||
|  |   this._hashBlock[3] = input.getInt32(); | ||
|  |   this._s = this.ghash(this._hashSubkey, this._s, this._hashBlock); | ||
|  | 
 | ||
|  |   // XOR hash input with output
 | ||
|  |   for(var i = 0; i < this._ints; ++i) { | ||
|  |     output.putInt32(this._outBlock[i] ^ this._hashBlock[i]); | ||
|  |   } | ||
|  | 
 | ||
|  |   // increment cipher data length
 | ||
|  |   if(inputLength < this.blockSize) { | ||
|  |     this._cipherLength += inputLength % this.blockSize; | ||
|  |   } else { | ||
|  |     this._cipherLength += this.blockSize; | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | modes.gcm.prototype.afterFinish = function(output, options) { | ||
|  |   var rval = true; | ||
|  | 
 | ||
|  |   // handle overflow
 | ||
|  |   if(options.decrypt && options.overflow) { | ||
|  |     output.truncate(this.blockSize - options.overflow); | ||
|  |   } | ||
|  | 
 | ||
|  |   // handle authentication tag
 | ||
|  |   this.tag = forge.util.createBuffer(); | ||
|  | 
 | ||
|  |   // concatenate additional data length with cipher length
 | ||
|  |   var lengths = this._aDataLength.concat(from64To32(this._cipherLength * 8)); | ||
|  | 
 | ||
|  |   // include lengths in hash
 | ||
|  |   this._s = this.ghash(this._hashSubkey, this._s, lengths); | ||
|  | 
 | ||
|  |   // do GCTR(J_0, S)
 | ||
|  |   var tag = []; | ||
|  |   this.cipher.encrypt(this._j0, tag); | ||
|  |   for(var i = 0; i < this._ints; ++i) { | ||
|  |     this.tag.putInt32(this._s[i] ^ tag[i]); | ||
|  |   } | ||
|  | 
 | ||
|  |   // trim tag to length
 | ||
|  |   this.tag.truncate(this.tag.length() % (this._tagLength / 8)); | ||
|  | 
 | ||
|  |   // check authentication tag
 | ||
|  |   if(options.decrypt && this.tag.bytes() !== this._tag) { | ||
|  |     rval = false; | ||
|  |   } | ||
|  | 
 | ||
|  |   return rval; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * See NIST SP-800-38D 6.3 (Algorithm 1). This function performs Galois | ||
|  |  * field multiplication. The field, GF(2^128), is defined by the polynomial: | ||
|  |  * | ||
|  |  * x^128 + x^7 + x^2 + x + 1 | ||
|  |  * | ||
|  |  * Which is represented in little-endian binary form as: 11100001 (0xe1). When | ||
|  |  * the value of a coefficient is 1, a bit is set. The value R, is the | ||
|  |  * concatenation of this value and 120 zero bits, yielding a 128-bit value | ||
|  |  * which matches the block size. | ||
|  |  * | ||
|  |  * This function will multiply two elements (vectors of bytes), X and Y, in | ||
|  |  * the field GF(2^128). The result is initialized to zero. For each bit of | ||
|  |  * X (out of 128), x_i, if x_i is set, then the result is multiplied (XOR'd) | ||
|  |  * by the current value of Y. For each bit, the value of Y will be raised by | ||
|  |  * a power of x (multiplied by the polynomial x). This can be achieved by | ||
|  |  * shifting Y once to the right. If the current value of Y, prior to being | ||
|  |  * multiplied by x, has 0 as its LSB, then it is a 127th degree polynomial. | ||
|  |  * Otherwise, we must divide by R after shifting to find the remainder. | ||
|  |  * | ||
|  |  * @param x the first block to multiply by the second. | ||
|  |  * @param y the second block to multiply by the first. | ||
|  |  * | ||
|  |  * @return the block result of the multiplication. | ||
|  |  */ | ||
|  | modes.gcm.prototype.multiply = function(x, y) { | ||
|  |   var z_i = [0, 0, 0, 0]; | ||
|  |   var v_i = y.slice(0); | ||
|  | 
 | ||
|  |   // calculate Z_128 (block has 128 bits)
 | ||
|  |   for(var i = 0; i < 128; ++i) { | ||
|  |     // if x_i is 0, Z_{i+1} = Z_i (unchanged)
 | ||
|  |     // else Z_{i+1} = Z_i ^ V_i
 | ||
|  |     // get x_i by finding 32-bit int position, then left shift 1 by remainder
 | ||
|  |     var x_i = x[(i / 32) | 0] & (1 << (31 - i % 32)); | ||
|  |     if(x_i) { | ||
|  |       z_i[0] ^= v_i[0]; | ||
|  |       z_i[1] ^= v_i[1]; | ||
|  |       z_i[2] ^= v_i[2]; | ||
|  |       z_i[3] ^= v_i[3]; | ||
|  |     } | ||
|  | 
 | ||
|  |     // if LSB(V_i) is 1, V_i = V_i >> 1
 | ||
|  |     // else V_i = (V_i >> 1) ^ R
 | ||
|  |     this.pow(v_i, v_i); | ||
|  |   } | ||
|  | 
 | ||
|  |   return z_i; | ||
|  | }; | ||
|  | 
 | ||
|  | modes.gcm.prototype.pow = function(x, out) { | ||
|  |   // if LSB(x) is 1, x = x >>> 1
 | ||
|  |   // else x = (x >>> 1) ^ R
 | ||
|  |   var lsb = x[3] & 1; | ||
|  | 
 | ||
|  |   // always do x >>> 1:
 | ||
|  |   // starting with the rightmost integer, shift each integer to the right
 | ||
|  |   // one bit, pulling in the bit from the integer to the left as its top
 | ||
|  |   // most bit (do this for the last 3 integers)
 | ||
|  |   for(var i = 3; i > 0; --i) { | ||
|  |     out[i] = (x[i] >>> 1) | ((x[i - 1] & 1) << 31); | ||
|  |   } | ||
|  |   // shift the first integer normally
 | ||
|  |   out[0] = x[0] >>> 1; | ||
|  | 
 | ||
|  |   // if lsb was not set, then polynomial had a degree of 127 and doesn't
 | ||
|  |   // need to divided; otherwise, XOR with R to find the remainder; we only
 | ||
|  |   // need to XOR the first integer since R technically ends w/120 zero bits
 | ||
|  |   if(lsb) { | ||
|  |     out[0] ^= this._R; | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | modes.gcm.prototype.tableMultiply = function(x) { | ||
|  |   // assumes 4-bit tables are used
 | ||
|  |   var z = [0, 0, 0, 0]; | ||
|  |   for(var i = 0; i < 32; ++i) { | ||
|  |     var idx = (i / 8) | 0; | ||
|  |     var x_i = (x[idx] >>> ((7 - (i % 8)) * 4)) & 0xF; | ||
|  |     var ah = this._m[i][x_i]; | ||
|  |     z[0] ^= ah[0]; | ||
|  |     z[1] ^= ah[1]; | ||
|  |     z[2] ^= ah[2]; | ||
|  |     z[3] ^= ah[3]; | ||
|  |   } | ||
|  |   return z; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * A continuing version of the GHASH algorithm that operates on a single | ||
|  |  * block. The hash block, last hash value (Ym) and the new block to hash | ||
|  |  * are given. | ||
|  |  * | ||
|  |  * @param h the hash block. | ||
|  |  * @param y the previous value for Ym, use [0, 0, 0, 0] for a new hash. | ||
|  |  * @param x the block to hash. | ||
|  |  * | ||
|  |  * @return the hashed value (Ym). | ||
|  |  */ | ||
|  | modes.gcm.prototype.ghash = function(h, y, x) { | ||
|  |   y[0] ^= x[0]; | ||
|  |   y[1] ^= x[1]; | ||
|  |   y[2] ^= x[2]; | ||
|  |   y[3] ^= x[3]; | ||
|  |   return this.tableMultiply(y); | ||
|  |   //return this.multiply(y, h);
 | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Precomputes a table for multiplying against the hash subkey. This | ||
|  |  * mechanism provides a substantial speed increase over multiplication | ||
|  |  * performed without a table. The table-based multiplication this table is | ||
|  |  * for solves X * H by multiplying each component of X by H and then | ||
|  |  * composing the results together using XOR. | ||
|  |  * | ||
|  |  * This function can be used to generate tables with different bit sizes | ||
|  |  * for the components, however, this implementation assumes there are | ||
|  |  * 32 components of X (which is a 16 byte vector), therefore each component | ||
|  |  * takes 4-bits (so the table is constructed with bits=4). | ||
|  |  * | ||
|  |  * @param h the hash subkey. | ||
|  |  * @param bits the bit size for a component. | ||
|  |  */ | ||
|  | modes.gcm.prototype.generateHashTable = function(h, bits) { | ||
|  |   // TODO: There are further optimizations that would use only the
 | ||
|  |   // first table M_0 (or some variant) along with a remainder table;
 | ||
|  |   // this can be explored in the future
 | ||
|  |   var multiplier = 8 / bits; | ||
|  |   var perInt = 4 * multiplier; | ||
|  |   var size = 16 * multiplier; | ||
|  |   var m = new Array(size); | ||
|  |   for(var i = 0; i < size; ++i) { | ||
|  |     var tmp = [0, 0, 0, 0]; | ||
|  |     var idx = (i / perInt) | 0; | ||
|  |     var shft = ((perInt - 1 - (i % perInt)) * bits); | ||
|  |     tmp[idx] = (1 << (bits - 1)) << shft; | ||
|  |     m[i] = this.generateSubHashTable(this.multiply(tmp, h), bits); | ||
|  |   } | ||
|  |   return m; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Generates a table for multiplying against the hash subkey for one | ||
|  |  * particular component (out of all possible component values). | ||
|  |  * | ||
|  |  * @param mid the pre-multiplied value for the middle key of the table. | ||
|  |  * @param bits the bit size for a component. | ||
|  |  */ | ||
|  | modes.gcm.prototype.generateSubHashTable = function(mid, bits) { | ||
|  |   // compute the table quickly by minimizing the number of
 | ||
|  |   // POW operations -- they only need to be performed for powers of 2,
 | ||
|  |   // all other entries can be composed from those powers using XOR
 | ||
|  |   var size = 1 << bits; | ||
|  |   var half = size >>> 1; | ||
|  |   var m = new Array(size); | ||
|  |   m[half] = mid.slice(0); | ||
|  |   var i = half >>> 1; | ||
|  |   while(i > 0) { | ||
|  |     // raise m0[2 * i] and store in m0[i]
 | ||
|  |     this.pow(m[2 * i], m[i] = []); | ||
|  |     i >>= 1; | ||
|  |   } | ||
|  |   i = 2; | ||
|  |   while(i < half) { | ||
|  |     for(var j = 1; j < i; ++j) { | ||
|  |       var m_i = m[i]; | ||
|  |       var m_j = m[j]; | ||
|  |       m[i + j] = [ | ||
|  |         m_i[0] ^ m_j[0], | ||
|  |         m_i[1] ^ m_j[1], | ||
|  |         m_i[2] ^ m_j[2], | ||
|  |         m_i[3] ^ m_j[3] | ||
|  |       ]; | ||
|  |     } | ||
|  |     i *= 2; | ||
|  |   } | ||
|  |   m[0] = [0, 0, 0, 0]; | ||
|  |   /* Note: We could avoid storing these by doing composition during multiply | ||
|  |   calculate top half using composition by speed is preferred. */ | ||
|  |   for(i = half + 1; i < size; ++i) { | ||
|  |     var c = m[i ^ half]; | ||
|  |     m[i] = [mid[0] ^ c[0], mid[1] ^ c[1], mid[2] ^ c[2], mid[3] ^ c[3]]; | ||
|  |   } | ||
|  |   return m; | ||
|  | }; | ||
|  | 
 | ||
|  | 
 | ||
|  | /** Utility functions */ | ||
|  | 
 | ||
|  | function transformIV(iv) { | ||
|  |   if(typeof iv === 'string') { | ||
|  |     // convert iv string into byte buffer
 | ||
|  |     iv = forge.util.createBuffer(iv); | ||
|  |   } | ||
|  | 
 | ||
|  |   if(forge.util.isArray(iv) && iv.length > 4) { | ||
|  |     // convert iv byte array into byte buffer
 | ||
|  |     var tmp = iv; | ||
|  |     iv = forge.util.createBuffer(); | ||
|  |     for(var i = 0; i < tmp.length; ++i) { | ||
|  |       iv.putByte(tmp[i]); | ||
|  |     } | ||
|  |   } | ||
|  |   if(!forge.util.isArray(iv)) { | ||
|  |     // convert iv byte buffer into 32-bit integer array
 | ||
|  |     iv = [iv.getInt32(), iv.getInt32(), iv.getInt32(), iv.getInt32()]; | ||
|  |   } | ||
|  | 
 | ||
|  |   return iv; | ||
|  | } | ||
|  | 
 | ||
|  | function inc32(block) { | ||
|  |   // increment last 32 bits of block only
 | ||
|  |   block[block.length - 1] = (block[block.length - 1] + 1) & 0xFFFFFFFF; | ||
|  | } | ||
|  | 
 | ||
|  | function from64To32(num) { | ||
|  |   // convert 64-bit number to two BE Int32s
 | ||
|  |   return [(num / 0x100000000) | 0, num & 0xFFFFFFFF]; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | } // end module implementation
 | ||
|  | 
 | ||
|  | /* ########## Begin module wrapper ########## */ | ||
|  | var name = 'cipherModes'; | ||
|  | if(typeof define !== 'function') { | ||
|  |   // NodeJS -> AMD
 | ||
|  |   if(typeof module === 'object' && module.exports) { | ||
|  |     var nodeJS = true; | ||
|  |     define = function(ids, factory) { | ||
|  |       factory(require, module); | ||
|  |     }; | ||
|  |   } else { | ||
|  |     // <script>
 | ||
|  |     if(typeof forge === 'undefined') { | ||
|  |       forge = {}; | ||
|  |     } | ||
|  |     return initModule(forge); | ||
|  |   } | ||
|  | } | ||
|  | // AMD
 | ||
|  | var deps; | ||
|  | var defineFunc = function(require, module) { | ||
|  |   module.exports = function(forge) { | ||
|  |     var mods = deps.map(function(dep) { | ||
|  |       return require(dep); | ||
|  |     }).concat(initModule); | ||
|  |     // handle circular dependencies
 | ||
|  |     forge = forge || {}; | ||
|  |     forge.defined = forge.defined || {}; | ||
|  |     if(forge.defined[name]) { | ||
|  |       return forge[name]; | ||
|  |     } | ||
|  |     forge.defined[name] = true; | ||
|  |     for(var i = 0; i < mods.length; ++i) { | ||
|  |       mods[i](forge); | ||
|  |     } | ||
|  |     return forge[name]; | ||
|  |   }; | ||
|  | }; | ||
|  | var tmpDefine = define; | ||
|  | define = function(ids, factory) { | ||
|  |   deps = (typeof ids === 'string') ? factory.slice(2) : ids.slice(2); | ||
|  |   if(nodeJS) { | ||
|  |     delete define; | ||
|  |     return tmpDefine.apply(null, Array.prototype.slice.call(arguments, 0)); | ||
|  |   } | ||
|  |   define = tmpDefine; | ||
|  |   return define.apply(null, Array.prototype.slice.call(arguments, 0)); | ||
|  | }; | ||
|  | define(['require', 'module', './util'], function() { | ||
|  |   defineFunc.apply(null, Array.prototype.slice.call(arguments, 0)); | ||
|  | }); | ||
|  | })(); |